X Payment Rules through Discriminant-Based Classifiers
نویسندگان
چکیده
In mechanism design it is typical to impose incentive compatibility and then derive an optimal mechanism subject to this constraint. By replacing the incentive compatibility requirement with the goal of minimizing expected ex-post regret, we are able to adapt techniques of statistical machine learning to the design of payment rules. This computational approach to mechanism design is applicable to domains with multidimensional types and situations where computational efficiency is a concern. Specifically, given an outcome rule and access to a type distribution, we train a support vector machine with a special discriminant function structure such that it implicitly establishes a payment rule with desirable incentive properties. We discuss applications to a multi-minded combinatorial auction with a greedy winner-determination algorithm and to an assignment problem with egalitarian outcome rule. Experimental results demonstrate both that the construction produces payment rules with low ex-post regret, and that penalizing classification errors is effective in preventing failures of ex-post individual rationality.
منابع مشابه
A Payment Rules through Discriminant-Based Classifiers
In mechanism design it is typical to impose incentive compatibility and then derive an optimal mechanism subject to this constraint. By replacing the incentive compatibility requirement with the goal of minimizing expected ex post regret, we are able to adapt statistical machine learning techniques to the design of payment rules. This computational approach to mechanism design is applicable to ...
متن کاملFuzzy Classifiers Based on Kernel Discriminant Analysis
In this paper, we discuss fuzzy classifiers based on Kernel Discriminant Analysis (KDA) for two-class problems. In our method, first we employ KDA to the given training data and calculate the component that maximally separates two classes in the feature space. Then, in the one-dimensional space obtained by KDA, we generate fuzzy rules with one-dimensional membership functions and tune the slope...
متن کاملClassification approach based on association rules mining for unbalanced data
This paper deals with the supervised classification when the response variable is binary and its class distribution is unbalanced. In such situation, it is not possible to build a powerful classifier by using standard methods such as logistic regression, classification tree, discriminant analysis, etc. To overcome this shortcoming of these methods that provide classifiers with low sensibility, ...
متن کاملChapter ? ? High - Dimensional Classification ∗
In this chapter, we give a comprehensive overview on high-dimensional classification, which is prominently featured in many contemporary statistical problems. Emphasis is given on the impact of dimensionality on implementation and statistical performance and on the feature selection to enhance statistical performance as well as scientific understanding between collected variables and the outcom...
متن کاملThe Role of Combining Rules in Bagging and Boosting
To improve weak classifiers bagging and boosting could be used. These techniques are based on combining classifiers. Usually, a simple majority vote or a weighted majority vote are used as combining rules in bagging and boosting. However, other combining rules such as mean, product and average are possible. In this paper, we study bagging and boosting in Linear Discriminant Analysis (LDA) and t...
متن کامل